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Abstract 

Beu, Musil & Whitney [Acta Cryst. (1962), 15, 
1292-1301; Acta Co, st. (1963), 16, 1241-1242] 
proposed a maximum-likelihood method of estimating 
the lattice parameters of cubic, tetragonal and 
hexagonal crystals, and a method of testing the 
hypothesis that systematic errors had been satisfac- 
torily accounted for. The use of maximum likelihood is 
unnecessary, and open to some objection. The 
argument is therefore rewritten in the more familiar 
least-squares form, and is generalized to cover the 
remaining crystal systems. Only if systematic errors are 
absent is it legitimate to estimate standard deviations of 
parameters from the differences of observed and 
calculated Bragg angles. With minor modifications the 
results are applicable to structural parameters also. 

1. Introduction 

1.1. Maximum likelihood versus least squares 

1.1.1. Beu, Musil & Whitney (1962, 1963; Beu & 
Whitney, 1967) have proposed a maximum-likelihood 
method of estimating lattice parameters, and Price 
(1979) has proposed one for estimating structural 
parameters. Advantages over the usual 'least-squares' 
methods are claimed for each application. Maximum- 
likelihood methods depend fundamentally on a 
knowlege of, or on an assumption about, the exact form 
of the distribution function of the statistical fluctuations 
and other random errors, and are thus more model- 
dependent than the method of least squares, which 
requires little more than that the second moments of the 
random fluctuations be finite. Price based his 
calculation on the assumption that the fluctuations in 
intensity had a Poisson distribution, though he 
recognized that the actual distribution, after correction 
for background, would be neither Poisson nor 
Gaussian (Wilson, 1978, 1980). Beu, Musil & Whitney 
assumed a Gaussian (normal) distribution of the errors 
in angle measurement, possibly without realizing, and 
certainly without emphasizing, that under this 
assumption the maximum-likelihood and the least- 
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squares estimate are practically equivalent (see, for 
example, Hamilton, 1964, pp. 37-42, or Bard, 1974, p. 
63). Both least-squares and maximum-likelihood 
estimates are likely to be biased, especially when the 
variance of the fluctuations had to be deduced from the 
observations, not being known a priori; a proposal for 
reducing the bias in least-squares estimates of struc- 
tural parameters has been made by Wilson (1976). 
Price has not investigated the bias in parameters 
obtained by his method, but the results of Wilson 
suggest, though they do not prove, that the bias is likely 
to be about half of that given by the usual 'least- 
squares' refinements. The advantages of maximum- 
likelihood methods have been reviewed by Edwards 
(1972). 

1.1.2. Objections, other than the necessity of 
knowing or assuming the distribution function of the 
random errors of measurement, have been raised 
against methods based on likelihood. The most 
important of these, in the present application, has been 
emphasized by Mandel (1979). For large numbers of 
'degrees of freedom' the distribution of the likelihood 
ratio is asymptotically the same as that of X 2, but it has 
been shown to deviate from that of X 2 when the number 
is small (Good, Gover & Mitchell, 1970). In lattice- 
parameter determination, especially for cubic crystals, 
the number of observations, and hence the number of 
degrees of freedom, is small - in some applications 
made by Beu and his colleagues it has been as low as 
one or two. Another objection, probably not relevant in 
the present context, is that in some circumstances the 
method of maximum likelihood fails to find an estimate, 
though other estimators succeed (Rao, 1973, p. 355, 
gives a simple but rather artificial example). 

1.1.3. The important advance in the proposals of 
Beu, Musil & Whitney thus does not lie in the use of the 
maximum-likelihood method, but in the emphasis on 
testing for the adequacy of the correction for 
systematic errors before lattice parameters are 
calculated. In view of the theoretical difficulties 
associated with the likelihood ratio - lack of knowledge 
of the distribution of random errors in the measurement 
of Bragg angles and lack of knowledge of the 
distribution of the likelihood ratio for small numbers of 
degrees of freedom (§ 2.1.2) - it seems worth while to 
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rewrite their argument in least-squares form, a form 
that is in any case more familiar in crystallography. 

1.2. Systematic errors not detected 

1.2.1. It must be pointed out that certain systematic 
errors would not be detected by either procedure. As 
Beu, Musil & Whitney emphasize, the Bragg angles 
calculated from equation (2) below depend only on the 
ratio of the wavelength 2 and the spacing d, so that all 
measurements made with a single emission line will be 
self-consistent, even if the assumed wavelength were 
grossly in error. The same self-consistency would be 
exhibited by all systematic errors equivalent to a 
wavelength error (those whose angle-dependence is 
proportional to tan 0). For the conventional 
diffractometer the summaries given by Wilson (1963, 
pp. 69-81; 1970, pp. 34-35, 143; 1974, p. 469 etc.) 
suggest that the self-consistent category would include 
absorption in the specimen, filters etc.; part of the axial 
divergence; refraction (wavelength change only); 
variation of quantum-counting efficiency; and, for 
peaks but not for centroids, dispersion-plus-Lorenz 
factor. A different list would apply for energy- 
dispersive diffractometers (Wilson, 1973), but their 
precision is not yet great enough for the question to be 
of much interest. 

1.2.2. Perhaps a further disclaimer should be made. 
Although Beu, Musil & Whitney describe their test as 
one of 'no remaining systematic errors', it is really one 
of 'any remaining systematic errors are small compared 
with the random errors'. More precise angle 
measurements might reveal unforeseen systematic 
errors, or the need to take into account systematic 
errors previously regarded as negligible. 

2. The residual R 

2.1. General discussion 

2.1.1. In the application to lattice-parameter deter- 
mination the quantity to be minimized is the sum of the 
squares of the differences between the observed Bragg 
angles and those calculated from the lattice parameter 
in the cubic case, or the lattice parameters in systems of 
lower symmetry, with appropriate weights. The residual 
to be minimized is thus: 

R = Z wi(qgi- Oi) z, ( l )  
l 

where ~0t is the observed Bragg angle and 0i is the Bragg 
angle calculated from 

2--  2d i sin 0~; (2) 

0i is thus a function of the lattice parameters entering 
into d t, the ith interplanar spacing. In the cubic case 

d t = a(h 2 + k 2 + 12) -1/2, (3) 

where a is the lattice parameter and hkl are the Miller 
indices; formulae for the less symmetrical crystal 
systems are to be found in International Tables f o r  
X-ray Crystallography (1959) and in most elementary 
texts (for example, Wilson, 1970, p. 73). The residual R 
is thus a function of the single parameter a for cubic 
crystals and up to six parameters (abcafl~) for crystals 
of lower symmetry. Provided that the number, say n, of 
lines measured is greater than the number, say m, of 
parameters to be determined, R can be minimized by 
standard methods and least-squares estimates of the 
parameters found. 

2.1.2. Under the hypothesis to be tested, the 
observed angles q~i have been corrected for all 
systematic errors, so that the differences between the 
~0[s and the 0is are due only to the random errors of 
measurement. The weight w t, according to usual 
statistical practice, should be chosen as the reciprocal 
of the variance of the corresponding ~0 l, say 0 2, so that 
equation (1) for the residual becomes 

R = ~ ((o I -- 0i)2/o~, (4) 
l = l  

the sum of n variables. If the angles 0 i were the true 
Bragg angles each of the n variables would have the 
mean value unity. In theory the sum could have any 
value between zero and infinity, though very large 
values would be unlikely. The expected value would be 

n 

R = Z 1 = n. (5) 
l = l  

In practice, when the lattice parameters are chosen to 
minimize R they are slightly influenced by the actual 
errors in determining the ~0[s, in such direction as to 
make the expected value of each term somewhat less 
than unity, and a little calculation shows that the 
reduction is 1 for each parameter determined 
(Hamilton, 1964, p. 130, footnote; a longer derivation 
by elementary methods is given in §3.3.3). The 
expected value of Rmi n is thus n - 1 for cubic crystals, 
n - 2 for tetragonal or hexagonal (including 
rhombohedral), n - 3 for orthorhombic, n - 4 for 
monoclinic, and n - 6 for triclinic, say 

E(Rmln) = n - m (6) 

in general. 

2.2. Variance o f  Rmi n when the error distribution is 
normal 

2.2.1. The expectation value ofRmi ., n - m, does not 
depend on any assumption about the distribution 
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function of the random experimental errors in the 
determination of ¢t. The variance of Rmi n does, 
however, depend on the exact distribution of the errors 
of measurement. For a normal distribution (as assumed 
by Beu, Musil & Whitney) it is easily found to be 

a~ = 2(n -- m). (7) 

Its value if the distribution is not normal is discussed in 
§3.3. The probability of getting a random deviation of 
2a R or more from the expected value is a few per cent, 
so that values ofRmi n up to 

(R  mln )critical = E ( R m l n )  + 2 o  R (8)  

= n - m + 212(n - m)] u2 (9) 

are not unlikely to arise by chance, but larger values 
are progressively less likely, and if large values are 
found they indicate that some systematic error has not 
been accounted for - if the remanent systematic error 
in ¢~ is 61 there will be an additional component of 
about 

Rsyst = ~ 6~/a~ (10) 
l--~l 

in Rm~ ,. The systematic errors act in the direction to 
increase Rm~ n, whatever the sign of the actual error ~t. 

2.2.2. Some critical values of Rmi , calculated from 
equation (9) for various values of (n -- m) given in the 
second column of Table 1, and the corresponding 
critical values recommended by Beu, Musil & Whitney 
for their likelihood statistic are given in the third 
column. They argue that values as large as those given 
in the table can happen quite frequently through 
random error, so that (though we may have our private 
suspicions) if Rmi n iS less than that given in the 
appropriate line of the table, we cannot reject the 
hypothesis that systematic errors have been eliminated, 
either experimentally or by the application of 
appropriate corrections. On the other hand, values very 
much larger are more and more improbable, so that if 
Rm~ , much exceeds the appropriate value we can be 

Table 1. Some values of  R corresponding to a 
deviation of  2a R greater than chance expectation 

n - - m  

(For the third column see § 2.2.2.) 

5% critical value 
n - m + 212(n - m)] m o f x  2 

1 3.83 3.84 
2 6.00 5.99 
3 7.90 7.82 
4 9.66 9.49 
5 11.32 11.07 
6 12.93 12.59 
7 14.48 14.07 
8 16.00 15.51 
9 17.49 16.92 

10 18.94 18.31 

practically certain that systematic errors are still 
present. 

3. Variance of  Rmt n when the error distribution is 
non-normal 

3.1. Criterion for rejecting the hypothesis 

3.1.1. The preceding discussion has left open two 
questions: how probable is a random deviation of 2tr R 
above the expected value of Rmin, and what is the 
expected value of o R when it is not assumed that the 
random errors in measuring the Bragg angles ~0~ have a 
normal distribution? The Bienaym&-Tchebycheff 
inequality (Cram6r, 1945, p. 183) gives an upper limit 
of 25% for the probability of a deviation of 2o without 
regard to direction, whatever the distribution function, 
with lower values for continuous unimodal 
distributions. As only positive deviations are of interest 
for the present purpose, and as the distribution of Rmin, 
though obviously skew (and very so for small values of 
n - m), is almost certainly continuous and unimodal, 
one m a y  reasonably assume that the probability of a 
deviation of 20 in the positive direction is not greater 
than 5 to 10%. (If Rm~ . had a normal distribution, 
which it can not, even if the errors in ¢~ have, the 
probability would be 2.3%.) The answer to the second 
question is complicated; as the following discussion 
shows, it is necessary to know the fourth moment of the 
distribution of the random errors in ~0 t, as well as the 
second moment o 2, in order to obtain OR. The reduced 
fourth moment (fourth moment about the mean divided 
by o~) for the errors in ~01 will be denoted by Pl, and its 
excess over 3 by 

Yt = ~ -  3. (11) 

(There is some difference in nomenclature; the word 
'excess' always refers to 7, but 'kurtosis' is used 
sometimes for y, as in Cram6r, but also for p, 
particularly in the USA.) 

3.1.2. For the normal distribution p is 3 and y is zero, 
but in general they must be determined by appropriate 
theory or experiment. Related calculations have been 
made by Hsu (1938), Rao (1952), Abrahams (1969), 
and others, but with different ends in view and with 
assumptions about at and /~, so that their results 
cannot be taken over directly. The general case of m > 
1 involves complicated algebra, and is given later 
(§3.3). The simple case m = 1 (cubic crystals) follows. 

3.2. Variance of  Rmi, for cubic crystals 

3.2.1. On the assumption of no remaining systematic 
errors, equation (4) can be written 

n 

R = y (~t-/lta)Vo~, (12) 
1 = 1  
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where ei is the random error in the measurement of tp~, 

A~ = O0~/c~a (13) 

evaluated at the current value of the lattice parameter 
a, and a is the amount by which the current value of a 
differs from that required to minimize R in the presence 
of the random errors e~. (As usual in least-squares 
procedures, successive approximations with corrected 
current values of a may be necessary.) Differentiating 
equation (12) with respect to a and equating to zero 
gives 

and hence 

a= Z Ai e l l  A~ (14) 

, e~ z A ' A j e ' e J  

_ _  sa  ( 1 5 )  
Rmln = Z O'~ A~ 

" Y 
l 

The expected value of each term in the first summation 
is unity, giving n in all. Most of the terms in the 
numerator of the second term have the expected values 
zero, but those with i = j have the expected value 

2 2 ~ A ~ / e i ,  so that the expected value of the second term 
is unity, the numerator and the denominator being 
equal. The expected value of Rm~ . is thus 

E(Rmin) = n -- 1, (16) 

confirming equation (6) for the cubic case of m = 1. 
The denominator of the second term of equation (15) 
occurs frequently, so that it is convenient to define a 
quantity D by 

2 2 D = ~. A t / a  t. (17) 
l 

3.2.2. The square of Rmln, required for calculating its 
variance, is then 

mmln = Z O'~-'-~- z~  (7 20~ 0 2 
i , j  l ,L  k 

Z A I A j A k A t  el ej e k e l D-2 + 
Lj, k,! o~ o~ o l a~ (18) 

The terms on the right are essentially of three kinds. (i) 
If any e occurs to the first power the expectation value 
of that term is zero. (ii) If any e occurs to the second 
power only the expectation value of eZ/a 2 is unity. (iii) 
If any e occurs to the fourth power the expectation 
value of e4/o "4 is g. Most of the terms in second and 
third summations vanish because of (i): those that 
survive have i, j ,  k, 1 equal in pairs or quartets. On 
careful reduction one obtains 

= -- - A l l o t ) ,  (19) E(RZmin) n 2 l + ~ ( g i - 3 ) ( 1  D-I  2 22 
1 

and 

a]  = Var (Rmi n) = E(R2min)- E2(Rmin) (20) 

- 2(n -- 1) + ~ (fit 3) (1 D -1A 2/-2x2 (21) __ - -  __ t t O i ]  • 
i 

If all the g's are equal to three (as would happen if the 
errors in all the q~'s had normal distributions), the 
summation vanishes and equation (21) reduces to the 
appropriate special case of equation (7). If A2/a 2 has 
much the same value for all reflexions, the final term 
within the parentheses in equation (21) will have the 
approximate value n -l, so that, approximately, 

o~ = 2 ( n -  1) + (1 - 2n- '  + n -2) Y ( g i -  3) (22) 
1 

= 2(n - 1) + (1 - 2n -1 + n -2) y. Yr (23) 
1 

It will be seen that oR does not approach the 'normal' 
value 2(n - 1), even asymptotically for large n, unless 
?i has the normal value of zero for all reflexions. 

3.2.3. I have not found any empirical studies of the 
normality of the distribution of the random errors in 
angle measurement. Langford (1973)persuaded several 
observers to make repeated measurements of the same 
film; a preliminary survey of the raw data accumu- 
lated by him suggests that y might vary with the 
observer. Values in the range between 1 and - 1  were 
obtained, giving variations of up to 50% in the value of 
oRE. It is possible, however, that the apparent variation 
is due only to statistical fluctuation, as no information 
is available about the variance of y. 

3.3. Variance o f  R,,,l . in the general case 

3.3.1. When there are m parameters to 
determined, equation (12) for the residual becomes 

where 

R = e l -  ~. Alpap 1, 
1=1 p=l 

be 

('~4) 

A ,  = OOllOap, (25) 

evaluated at the current value of the parameter ap, ap is 
the amount by which ap differs from the value required 
to minimize R, and the other symbols have the same 
significance as in equation (12). Expanding the square 
in equation (24) gives 

R =  = ) 

+ Z c t p a t l  (26) 
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To facilitate manipulation, define 

R ° = ~ .  - f ~ ' .  e~ (27) 

Aip Ei (28) 
Cp : G~ ' 

A ip ,4 iq 
bpq (29) 2. i cr~ 

Then 

R = R o -  2 Z cpap + Z bpqapaq. (30) 
P P,q 

The following expectation values, needed later, are 
readily found: 

E(Ro)  = n, (31) 

E(R~)  = n ( n -  1) + ~ #~ (32) 
i = 1  

= n(n + 2) + ~ ( # i -  3), (33) 
i 

E(cp) = 0, (34) 

E(cp cq) = b m, (35) 

A ip A iq fl i 
E ( R ° c p e q ) : ( n - l ) b p q  + Z cr~ (36) 

i 

A ip A lq(#i 3) 
- (n + 2)bpq + ~-~ 

1 

- ~ -  , ( 3 7 )  

i ° i  

and 

E(cp eq e r e$) = bt, q b,. s + bp,. bqs + bp$ bq,. 

A ip a iq  a l r A i s ( f l i  - 3) 
+ Z (38/ 

3.3.2. Differentiating equation (30) with respect to a k 
gives the m normal equations for minimum R: 

m 

~. b p k % , = c  k, k =  l , 2  . . . .  ,m .  (39) 
p = l  

These can be solved by the usual determinantal method 
(see, for example, Aitken 1939, pp. 55-56). Form the 
determinant 

J b l l  12 . . .  blm 

b21 b22 . . .  b2r n 

. . . . . . . . .  

1 bin2 "'" bmm 

and let Bpq be the co-factor of bpq. Then 

a k =  ~ Bpkcp/D, k =  l , 2 , . . . , m ,  (41) 
p = l  

where cp is given by equation (28). 

(40) 

3.3.3. The minimum residual could be found by 
substituting these values of ttk in equation (30), but it is 
easier to use equations (39) to eliminate the quadratic 
terms % aq first. Multiplying each of the equations (39) 
by ttk and adding for all values of k gives 

bpq ap aq = ~ Cp t.tp, (42) 
P,q P 

where on the left k as summation index has been 
replaced by q, and on the right by p. This substitution, 
obviously, does not change the value of the sum- 
mations, and makes them look like those in equation 
(30). Substitution of this result in equation (30) and 
rearranging gives 

m 

~. Cp ~p = R - R o. (43) 
p = l  

Since the values of ap in equations (39) and (43) must 
be self-consistent, the value of R m l  n is given by the 
vanishing of the determinant 

R m i  n - R 0 C l C 2 . . .  Crn 

C 1 b l l  bl: . . .  blm 

C2 b21 b22 ... b2m 
. . .  . . .  . . .  . ° .  . . .  

Cm bml bin2 . . .  bmm 

(44) 

Expanding in terms of the co-factors of the elements of 
the first row and column gives 

D(Rml n -- Ro) + ~ Cp cq Bm = 0. (45) 
P,q 

The expectation value of Rm~ . is, on making use of 
equations (31) and (35), 

E(Rmin) = n - D - l  ~ b m B m ,  (46) 
P,q 

or, since the summation of bpq Bpq over either p or q 
gives D, and then summation over the other gives mD, 

E(Rmin) = n -- m, (47) 

verifying equation (6). It will be noticed that there has 
been no assumption about the distribution of the errors 
in measuring the angles ~Pi, other than that they have a 
finite variance. 

3.3.4. Squaring equation (45) gives 

D2 E ( R  2 D 2 rain) = R ~ -  2D R o ~ Cp cqB m 
P,q 

+ ~ CpCqC rc  s B  mBrs,  (48) 
p, q, r, $ 

which becomes, on taking expectation values from 
equations (33)-(38), 
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D 2 E(R 2 = D 2 2) + D 2 r a in )  n(n + Y (lu~- 3) 
i 

- 2(n + 2)D y b~ Bpq 
P,q 

- 2 D  y ( / h - 3 )  
t,p,q (72 

Alp Au~ B ~  

3.4. Variance and covariance of  the parameters 

The expected value of the correction to the current 
value o f  the kth parameter is zero after a sufficient 
number of cycles of refinement, as is seen from 
equations (41) and (34). Its variance is 

(49) 

E(a2)= D -2 ~ BpkBakE(CpCq) (54) 
pq 

+ y (b~ brs + b~,r has 
p.a.r,s = D -2 ~_. Bpk Bak boa, 

+ bus bar ) B ~  Brs Pq 
A AiaAtrAlsB~Brs by equation (35). Equation (55), considered as a sum 

+ Y ( # i -  3) lp over p, is an expansion in false co-factors unless q = k, 
i,p.q,r,s when it is a true expansion of D. One thus obtains the 

familiar formula 

Unless g~ is the same for all i, the terms in g~ do not 
simplify further. The double sum over p,q in the second 
line gives, as before, roD. In the third line the terms 
involving bpq b,. s are the expansion of m 2 D 2 in terms of 
co-factors. Most of the sums involving bpr bqs and bps bar 
are expansions in false co-factors, and therefore vanish, 
but enough survive to give 2mD 2. Subtracting 

E2(Rmin) = n 2 -- 2mn + m 2, (50) 

as given by equation (47), one has finally for the 
variance of R rain 

a 2 = 2 ( n -  m) + Z ( • l -  3) 
1 

A~pAlq B ~  
- 2 0 - 1  Z ( # i - 3 )  

l,p,q O~ 

+ D-2 ~ (#l 3) AlpAiqAlrAisB~Brs 
- . ( 5 1 )  

t,p,q,r,s ~Y~ 

The first term is that expected for a normal distri- 
bution, for which the others vanish (/1 = 3). I f /z  is 
constant but not equal to 3, say ~t = 3 + 7, the second 
term reduces to n7 and the third to -2m7,  but there is 
no significant simplification of the fourth. The fourth 
seems, however, to be smaller than the third by a factor 
of about m/n, so that, to some approximation, 

o "2 = 2(n - m) + ? ( n -  2m) 

+ term of the order of 7m2/n, (52) 

a reasonable generalization of equation (23) for the 
one-parameter case. Equation (51) can be written, 
without approximation, as 

o 2 = 2(n - m) 

+ Z ( I .h-3)  { 1 - D - I  Z p,q 02 , (53) 

a generalization of equation (21). It would be easier to 
evaluate than equation (51) in an actual case. 

(55) 

a2(ak) = BkJD.  (56) 

The covariance of the kth and /th parameter is, 
similarly, 

cov (a k, a t) = Bkt/D. (57) 

4. Effect of systematic errors 

Most treatments of the method of least squares dismiss 
systematic errors with a sentence or two about the 
necessity of avoiding them. It is easy to include them 
formally in the preceding development; if each ~Pt is 
subject to a systematic error f~ as well as a random 
error e t, equations (24)-(30) and (39)-(45) are changed 
only by the substitution of e t + f~ for e t wherever it 
occurs. The expectation values, equations (31)-(38) 
and (46) onwards, however, become more complicated. 
It is easy to show that 

2 2 E(Ro) = n + ~. fit/a t, (58) 
1 

E(Cp) = ~. Alp fl/tr2 (59) 
1 

- F o, say, (60) 

E(Cp%)=bpq + GG, (61) 

so that 

2 2 E(Rmin) = n -- m + ~ fi/tri 
t 

-- D- '  Z B ~  G F q. (62) 
pq 

The first two terms in equation (62), n - m, are the 
expectation value of Rm| n under the hypothesis of no 
remanent systematic error, as given by equation (47). 
The third term is the naive expectation of the increase 
in R caused by systematic errors, as given by equation 



A. J.  C .  W I L S O N  943 

(10), and the fourth is the reduction in it caused by the 
attempts of the process to minimize R. It can, of 
course, be calculated for any known or postulated set 
of systematic errors, but it is not easy to see its physical 
significance. In the one-parameter (cubic) case it 
cancels exactly with the third term if ~t is proportional 
to tan 0~. The expected value of Rmi n is independent of 
such a systematic error, as foreseen by Beu, Musil & 
Whitney (§ 1.2.1 above). With a little more calculation 
it can be shown that the parts of the third and fourth 
terms corresponding to the scale factor for the linear 
dimensions a,b,c cancel for such an error even in the 
general case, though R remains sensitive to the axial 
ratios and the angles a, fl, y. Presumably systematic 
errors can never produce a nett negative effect on 
E(Rmin), though I have not found or been able to devise 
a general proof of this. 

The expression for the variance of Rmi n in the 
presence of systematic errors is complicated, and 
involves the skewness as well as the excess of the 
distribution of random errors in the angle 
measurements. Fortunately it is not needed for testing 
the hypothesis that any remaining systematic errors are 
not large compared with the random errors (§5.2.1). 
The expected value of the kth parameter is given by 

E( t l k )  = D -1 ~. Bpk /'p, (63)  
p 

instead of zero, from equations (41) and (60). Its 
variance, however, remains 

tr2(ak) = B k k / D ,  (64) 

the terms in the fi's cancelling, and the covariance 
remains 

cov (a k, ttt)= Bkl/D. (65) 

However, although the form of equations (63) and (64) 
is the same as that of (56) and (57), the numerical 
values will be different - one hopes only slightly - 
because the derivatives Alp lequation (25)] entering into 
bpq [equation (29)] and hence the co-factors Bpo will be 
evaluated at values of the parameters biased by 
amounts given, on the average, by equation (63). 

5. Implications 

5.1. Choke of  method 

5.1.1. The preceding discussion shows that the 
method of maximum likelihood has no significant 
advantages over the method of least squares in the 
determination of parameters, and in fact has 
disadvantages, particularly when the number of degrees 
of freedom is small. The necessity of assuming an 
error-distribution function, and the uncertainty about 
the distribution of the likelihood ratio for small n - m, 

outweigh its apparent attractiveness. Even if a normal 
distribution of errors is assumed, the paper of Good, 
Gover & Mitchell (1970) shows that the distribution of 
R [equation (4)] is closer to that of the X 2 distribution 
than the distribution of the likelihood ratio. 

5.1.2. If the distribution is not normal, the method of 
least squares requires no alteration in the estimation of 
the parameters and their standard deviations. To test 
for significant remanent systematic errors the only 
additional information needed is the 'excess' of the 
error distribution. For the likelihood method a 
knowledge of the full error distribution is required. 

5.2. Estimation of  parameters 

5.2.1. If systematic errors are present the standard 
deviation in the parameters, given by equation (64), 
may be quite small even if the parameters themselves 
are in error by the amounts given by equation (63). It 
is, therefore, of considerable importance to test for 
remanent systematic errors before calculating the 
parameters. A statistical test, of course, can never give 
certainty; it is always possible for Rml n to  have its 
expected value, or be even less, if in the particular set of 
measurements the random errors happen to be more or 
less equal and opposite to the systematic. It is also 
possible for Rmi n to  exceed its expected value by 3a R, or 
even 4o R, if in the particular set of measurements the 
random errors happen to be particularly large, although 
the systematic errors have been fully corrected. The 5 % 
critical value of X 2, as used by Beu, Musil & Whitney, 
or the 2tr~ criterion used in §2.2.1 (almost equivalent if 
the errors have a normal distribution), is a reasonable 
practical compromise between a too frequent false 
reassurance when systematic errors are present, and a 
too frequent false alert when they are absent. The latter 
will occur about once in 20 sets of measurements, and 
there is perhaps a similar probability that the 
systematic errors, as defined by Rsyst in equation (10), 
amount to about 4aR, but are partially obscured by 
random fluctuations. 

5.2.2. Suppose that the observed value ofRml . is 

Rmi n = n -- m + ka R, (66) 

and that we attribute the excess above n - m to R srst: 

Rsrst = .3". ~ / o 2 =  ka,. (67) 
i 

The average value of fi2/02 is then 

(~2/O2)av = kaR/n, (68) 

which is, for a normal distribution of errors, 

(~2/O2)a v = 21/2k(n -- m) l /2 /n ,  (69) 

or, for the general case, to the approximation of 
equation (52), 

( c ~ / O 2 ) a v = k l ( 2  + y ) n - 2 ( 1  + 7)m}l /2 /n .  (70)  
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The root-mean-square value of the remanent systematic 
error is thus indicated to be 

(¢~/O')r.m.s" : k l /2{(2  + y)/n} TM 

x { 1 -  2(1 + ),)m/(2+ y)n} TM. (71) 

For values of n and m in the lattice-parameter range 
this is approximately unity, and it decreases slowly with 
increasing n. Some examples are: 

n m y (¢~/O')r.m. s" 

3 1 - 1  1.07 
3 1 0 0.97 
3 1 1 1.15 
6 1 0 1.03 

1000 100 0 0.29 

all for k = 2. 

5.3. Estimation of  standard deviations 

It has been assumed throughout that the standard 
deviations of the angle measurements are known, either 
from repeated observations (film methods) or from the 
counting statistics (counter methods; see, for example, 
Wilson, 1967). The quantities Bpq are then determinate. 
It is possible to estimate them instead by including the 
o~ as parameters in the least-squares refinement, with a 
large increase in n and m, or to assume that their ratios 
are known and use the value of Rmi n to estimate their 
absolute values (see, for example, Hamilton, ch. 4). 
These least-squares estimates are legitimate only if the 
systematic errors are known to be negligible, and the 
preceding paragraph has shown that in the lattice- 
parameter range the sensitivity of statistical tests is 
limited; remanent systematic errors of the same order 
as the random errors being at the limit of detectability. 
If standard deviations, as such, are what is wanted, 
therefore, least-squares estimates of them based on Rmi n 
are somewhat dubious. However, as indicating error 
limits, estimates based on Rm~ n are conservative in the 
sense that they over-estimate the standard deviations 
by including with them some part of the systematic 
errors. 

5.4. Structural parameters 

The preceding discussion has concentrated on the 
determination of lattice parameters, but no assumptions 
have been made that make it inapplicable to structural 
parameters. Any useful results could, therefore, be 
taken over immediately. In structure determination n is 
usually large and large compared with m, so that in the 
structure-parameter range statistical tests for syste- 

matic error are more sensitive, with (~ /O ' ) r .m . s "  : 0.3 
being at about the limit of detectability (last line of 
§5.2.2). 

Part of this paper (essentially §§ 1.1.1 and 2) was 
included in a contribution to the Symposium on 
Accuracy in Powder Diffractometry, US National 
Bureau of Standards, 11-15 June 1979. I am indebted 
to Dr J. I. Langford for access to his raw data on film 
measurement and to Dr J. Mandel for offprints and an 
advance copy of his Symposium paper. 
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